Diffraction by edges
نویسندگان
چکیده
In these expository notes we explain the role of geometric optics in wave propagation on domains or manifolds with corners or edges. Both the propagation of singularities, which describes where solutions of the wave equation may be singular, and the diffractive improvement under non-focusing hypotheses, which states that in certain places the diffracted wave is more regular than a priori expected, is described. In addition, the wave equation on differential forms with natural boundary conditions, which in particular includes a formulation of Maxwell’s equations, is studied.
منابع مشابه
Performance Analysis of CATR Reflector with Super Hybrid Modulated Segmented Exponential Serrated Edges
This paper presented a theoretical and numerical investigation of the Compact Antenna Test Range (CATR) equipped with Super Hybrid Modulated Segmented Exponential Serrations (SHMSES). The investigation was based on diffraction theory and, more specifically, the Fresnel diffraction formulation. The CATR provides uniform illumination within the Fresnel region to test antenna. Application of serra...
متن کاملModels and Algorithms for Interactive audio Rendering
Realistic modeling of reverberant sound in 3D virtual worlds provides users with important cues for localizing sound sources and understanding spatial properties of the environment. Unfortunately, current geometric acoustic modeling systems do not accurately simulate reverberant sound. Instead, they model only direct transmission and specular reflection, while diffraction is either ignored or m...
متن کاملStep-by-step Evolution of Young’s Double-slit Interference Fringes Using Boundary Diffraction Wave Theory
Present work reports formation of Young’s double-slit interference fringes using the Young's own theory of diffraction called the theory of boundary diffraction wave. Theory demands that double-slit interference fringes are generated due to superposition of boundary diffraction waves originating from the edges of the slits due to their physical interaction with the incident light. The theoretic...
متن کاملDihedral Corner Reflector Backscatter Using Higher Order Reflections and Diffractions
The uniform theory of diffraction (UTD) plus an imposed edge diffraction extension is used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, and acute included angles. UTD allows individual backscattering mechanisms of the dihedral corner reflectors to be identified and provides good agreement w?ith experimental cross section measurements in the a...
متن کاملDihedral Corner Reflector Backscatter Using Higher Order Reflections and Diffractions
The uniform theory of diffraction (UTD) plus an imposed edge diffraction extension is used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, and acute included angles. UTD allows individual backscattering mechanisms of the dihedral corner reflectors to be identified and provides good agreement w?ith experimental cross section measurements in the a...
متن کاملScattered Responses From Suspended Reflector PanelsWith Rounded Edges
Sound reflections from most finite surfaces, such as overhead reflector panels, include a component known as edge diffraction. Edge diffraction is the scattered energy required to maintain a continuous sound field despite the discontinuity in acoustical impedance presented by the scatterer. Edge diffraction can interfere with primary scattered energy to produce comb filtering at receiver locati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006